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The Membership Problem

Definition (The Membership Problem)
Given a Turing machine M and a string w , is w ∈ L(M)?

Theorem (The Membership Problem)
The Membership Problem is undecidable.
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The Membership Problem

Proof.
Suppose that the Membership Problem is decidable.

Then there is a Turing machine A that decides it.
Consider the language L that we created earlier:

L = {wi | wi ∈ L(Mi)}.

We found that L is recursively enumerable, but not recursive.
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The Membership Problem

Proof.
Let M1 be a Turing machine that accepts L.

Build a Turing machine M2 that does the following.

Read a string w .
Feed M1 and w into A.

M2 will accept w if w ∈ L(M1).
M2 will reject w if w /∈ L(M1).
Thus, L is recursive, which is a contradiction.
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The Emptiness Problem

Definition (The Emptiness Problem)
Given a Turing machine M, is L(M) = ∅?

Theorem (The Emptiness Problem)
The Emptiness Problem is undecidable.
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The Emptiness Problem

Proof.
Suppose that the Emptiness Problem is decidable.

Then there is a Turing machine E that decides it.
We will reduce the Membership problem (undecidable) to the
Emptiness Problem.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 9 / 24



The Emptiness Problem

Proof.
Suppose that the Emptiness Problem is decidable.
Then there is a Turing machine E that decides it.

We will reduce the Membership problem (undecidable) to the
Emptiness Problem.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 9 / 24



The Emptiness Problem

Proof.
Suppose that the Emptiness Problem is decidable.
Then there is a Turing machine E that decides it.
We will reduce the Membership problem (undecidable) to the
Emptiness Problem.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 9 / 24



The Emptiness Problem

Proof.
Build a Turing machine that does the following.

Read as input any Turing machine M and any input w .
Modify M to a Turing machine Mw whose language is L(M) ∩ {w}.
Note that

L(M) ∩ {w} =

{
Σ∗, w ∈ L(M)
∅, w /∈ L(M)

Feed Mw to E .

If E accepts Mw , then w /∈ L(M).
If E rejects Mw , then w ∈ L(M).
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The Emptiness Problem

Proof.
Therefore, if the Empiness Problem is decidable, then the
Membership Problem is also decidable.

But the Membership Problem is not decidable.
Therefore, the Empiness Problem is not decidable.
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Functional Properties

Definition (Functional Property)
A property of a Turing machine is called functional if for any two Turing
machines M1 and M2 with the same language, either the both have the
property or neither has the property.

That is, the property depends only in the Turing machine’s input
and output, not on how it processes the input.
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Rice’s Theorem

Theorem (Rice’s Theorem)
All nontrivial functional properties are undecidable.
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Proof.
Let P be a nontrivial functional property.

Let M1 be a Turing machine that rejects all inputs.
That is, L(M1) = ∅.
Without loss of generality, assume that M1 does not have property
P.
(Otherwise, we reverse the roles of P and P.)
Let M2 be a Turing machine that has property P.
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Proof.
Suppose that P is decidable.

Let DP be a decider for P.
That is, given any Turing machine M, DP will decide whether M
has property P.

M has prop P yes

no

DP

M

M does not
have prop P
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Proof.
We will build a decider DM for the Membership Problem.

But first we describe how to build another Turing machine Mw ,
which we will use as a module.
Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .
If M halts and rejects w , then Mw rejects x .
If M halts and accepts w , then Mw simulates M2 on x .
If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



Proof.
We will build a decider DM for the Membership Problem.
But first we describe how to build another Turing machine Mw ,
which we will use as a module.

Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .
If M halts and rejects w , then Mw rejects x .
If M halts and accepts w , then Mw simulates M2 on x .
If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



Proof.
We will build a decider DM for the Membership Problem.
But first we describe how to build another Turing machine Mw ,
which we will use as a module.
Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .
If M halts and rejects w , then Mw rejects x .
If M halts and accepts w , then Mw simulates M2 on x .
If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



Proof.
We will build a decider DM for the Membership Problem.
But first we describe how to build another Turing machine Mw ,
which we will use as a module.
Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .

If M halts and rejects w , then Mw rejects x .
If M halts and accepts w , then Mw simulates M2 on x .
If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



Proof.
We will build a decider DM for the Membership Problem.
But first we describe how to build another Turing machine Mw ,
which we will use as a module.
Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .
If M halts and rejects w , then Mw rejects x .

If M halts and accepts w , then Mw simulates M2 on x .
If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



Proof.
We will build a decider DM for the Membership Problem.
But first we describe how to build another Turing machine Mw ,
which we will use as a module.
Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .
If M halts and rejects w , then Mw rejects x .
If M halts and accepts w , then Mw simulates M2 on x .

If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



Proof.
We will build a decider DM for the Membership Problem.
But first we describe how to build another Turing machine Mw ,
which we will use as a module.
Given M and w , build a Turing machine Mw that does the
following:

Given input x , simulate M on w .
If M halts and rejects w , then Mw rejects x .
If M halts and accepts w , then Mw simulates M2 on x .
If M loops, then (obviously) Mw loops.

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 17 / 24



x

M rejects w

M accepts w

Mw

M, w
U

no

M2 rejects x

yes
M2 accepts x

U
M2, x
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Proof.
Therefore,

L(Mw ) =

{
L(M1), w /∈ L(M)
L(M2), w ∈ L(M)

That is, Mw has property P if and only if w ∈ L(M).
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Proof.
Now let DA use DM to decide whether Mw has property P:
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DM

DP

yes

no

Mw has P

MwM, w

Mw has not P

Convert

Robb T. Koether (Hampden-Sydney College) Undecidable Problems Wed, Nov 16, 2016 21 / 24



Proof.
That is, DA decides the Membership Problem, which is a
contradiction.

Therefore, P is undecidable.
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Assignment

Homework
Section 12.2 Exercise 4.
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